Package: ROCit 2.1.1

ROCit: Performance Assessment of Binary Classifier with Visualization

Sensitivity (or recall or true positive rate), false positive rate, specificity, precision (or positive predictive value), negative predictive value, misclassification rate, accuracy, F-score- these are popular metrics for assessing performance of binary classifier for certain threshold. These metrics are calculated at certain threshold values. Receiver operating characteristic (ROC) curve is a common tool for assessing overall diagnostic ability of the binary classifier. Unlike depending on a certain threshold, area under ROC curve (also known as AUC), is a summary statistic about how well a binary classifier performs overall for the classification task. ROCit package provides flexibility to easily evaluate threshold-bound metrics. Also, ROC curve, along with AUC, can be obtained using different methods, such as empirical, binormal and non-parametric. ROCit encompasses a wide variety of methods for constructing confidence interval of ROC curve and AUC. ROCit also features the option of constructing empirical gains table, which is a handy tool for direct marketing. The package offers options for commonly used visualization, such as, ROC curve, KS plot, lift plot. Along with in-built default graphics setting, there are rooms for manual tweak by providing the necessary values as function arguments. ROCit is a powerful tool offering a range of things, yet it is very easy to use.

Authors:Md Riaz Ahmed Khan [aut, cre], Thomas Brandenburger [aut]

ROCit_2.1.1.tar.gz
ROCit_2.1.1.zip(r-4.5)ROCit_2.1.1.zip(r-4.4)ROCit_2.1.1.zip(r-4.3)
ROCit_2.1.1.tgz(r-4.5-any)ROCit_2.1.1.tgz(r-4.4-any)ROCit_2.1.1.tgz(r-4.3-any)
ROCit_2.1.1.tar.gz(r-4.5-noble)ROCit_2.1.1.tar.gz(r-4.4-noble)
ROCit_2.1.1.tgz(r-4.4-emscripten)ROCit_2.1.1.tgz(r-4.3-emscripten)
ROCit.pdf |ROCit.html
ROCit/json (API)
NEWS

# Install 'ROCit' in R:
install.packages('ROCit', repos = c('https://riazakhan94.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/riazakhan94/rocit/issues

Datasets:

On CRAN:

Conda:

7.66 score 6 packages 332 scripts 1.5k downloads 17 mentions 17 exports 0 dependencies

Last updated 3 years agofrom:068953e58f. Checks:3 OK, 6 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 06 2025
R-4.5-winNOTEMar 06 2025
R-4.5-macNOTEMar 06 2025
R-4.5-linuxNOTEMar 06 2025
R-4.4-winNOTEMar 06 2025
R-4.4-macNOTEMar 06 2025
R-4.4-linuxNOTEMar 06 2025
R-4.3-winOKMar 06 2025
R-4.3-macOKMar 06 2025

Exports:cartesian_2DciAUCciROCciROCbinciROCempconvertclassgainstablegetsurvivalgettptnfpfninvlogitksplotlogitmeasureitMLestimatesrankorderdatarocittrapezoidarea

Dependencies:

ROCit: An R Package for Performance Assessment of Binary Classifier with Visualization

Rendered frommy-vignette.Rmdusingknitr::rmarkdownon Mar 06 2025.

Last update: 2022-05-19
Started: 2022-05-19